240 research outputs found

    The young open cluster Trumpler 3

    Full text link
    We present a photometric and spectroscopic study of the poorly investigated open cluster Trumpler~3. Basic parameters such as the age of 70±1070\pm10 Myr, the color excess E(BV)=0.30±0.02E(B-V)=0.30\pm0.02 mag, the distance of 0.69±0.030.69\pm0.03 kpc and the limiting radius of 12' were redetermined and compared with previous preliminary studies. The distance of 0.65±0.090.65\pm0.09 kpc was determined independently by spectral parallaxes. Simultaneously, our analysis allowed us to estimate a total number of members to be Ntot=570±90N_{\rm{tot}}=570\pm90 and a total mass of the cluster to be Mtot=270±40M_{\rm{tot}}=270\pm40 M\rm{M}_{\odot}. We also determined a state of cluster's dynamical evolution. We conclude that Trumpler~3 is a young low-massive stellar ensemble with a typical mass function slope, located near to the outer edge of the Galaxy's Orion Spur. As a result of a wide-field search for short period variable stars, 24 variables were discovered in the cluster's area. Only one of them -- a variable of the γ\gamma-Dor type -- was found to be a likely cluster member

    Engaging and Disengaging with Colonial Pasts in City Museums

    Get PDF

    The stellar content of the young open cluster Trumpler 37

    Get PDF
    With an apparent cluster diameter of 1.5{\deg} and an age of ~4 Myr, Trumpler 37 is an ideal target for photometric monitoring of young stars as well as for the search of planetary transits, eclipsing binaries and other sources of variability. The YETI consortium has monitored Trumpler 37 throughout 2010 and 2011 to obtain a comprehensive view of variable phenomena in this region. In this first paper we present the cluster properties and membership determination as derived from an extensive investigation of the literature. We also compared the coordinate list to some YETI images. For 1872 stars we found literature data. Among them 774 have high probability of being member and 125 a medium probability. Based on infrared data we re-calculate a cluster extinction of 0.9-1.2 mag. We can confirm the age and distance to be 3-5 Myr and ~870 pc. Stellar masses are determined from theoretical models and the mass function is fitted with a power-law index of alpha=1.90 (0.1-0.4 M_sun) and alpha=1.12 (1-10 M_sun).Comment: 9 pages, 10 figures, 2 long tables, accepte

    The Horizontal Ice Nucleation Chamber (HINC) : INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    Get PDF
    In this work we describe the Horizontal Ice Nucleation Chamber (HINC) as a new instrument to measure ambient ice-nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l. ) to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L−1; normalized to standard T of 273 K and pressure, p, of 1013 hPa) and 4.7 std L−1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC) of 2.2 std L−1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L−1 was measured during an event influenced by marine air, arriving at the JFJ from the North Sea and the Norwegian Sea. The contribution from anthropogenic or other sources can thereby not be ruled out. Second, INP concentrations up to 146.2 std L−1 were observed during a Saharan dust event. To our knowledge this is the first time that a clear enrichment in ambient INP concentration in remote regions of the atmosphere is observed during a time of marine air mass influence, suggesting the importance of marine particles on ice nucleation in the free troposphere

    A Possible Detection of Occultation by a Proto-planetary Clump in GM Cephei

    Get PDF
    GM Cep in the young (~4 Myr) open cluster Trumpler 37 has been known to be an abrupt variable and to have a circumstellar disk with very active accretion. Our monitoring observations in 2009-2011 revealed the star to show sporadic flare events, each with brightening of < 0.5 mag lasting for days. These brightening events, associated with a color change toward the blue, should originate from an increased accretion activity. Moreover, the star also underwent a brightness drop of ~1 mag lasting for about a month, during which the star became bluer when fainter. Such brightness drops seem to have a recurrence time scale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between grain coagulation and planetesimal formation in a young circumstellar disk.Comment: In submission to the Astrophysical Journal, 4 figure

    Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin

    Full text link
    The transiting planet WASP-12 b was identified as a potential target for transit timing studies because a departure from a linear ephemeris was reported in the literature. Such deviations could be caused by an additional planet in the system. We attempt to confirm the existence of claimed variations in transit timing and interpret its origin. We organised a multi-site campaign to observe transits by WASP-12 b in three observing seasons, using 0.5-2.6-metre telescopes. We obtained 61 transit light curves, many of them with sub-millimagnitude precision. The simultaneous analysis of the best-quality datasets allowed us to obtain refined system parameters, which agree with values reported in previous studies. The residuals versus a linear ephemeris reveal a possible periodic signal that may be approximated by a sinusoid with an amplitude of 0.00068+/-0.00013 d and period of 500+/-20 orbital periods of WASP-12 b. The joint analysis of timing data and published radial velocity measurements results in a two-planet model which better explains observations than single-planet scenarios. We hypothesize that WASP-12 b might be not the only planet in the system and there might be the additional 0.1 M_Jup body on a 3.6-d eccentric orbit. A dynamical analysis indicates that the proposed two-planet system is stable over long timescales.Comment: Accepted for publication in A&
    corecore